skip to main content


Search for: All records

Creators/Authors contains: "Morgan, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    Among extant great apes, orangutans are considered the most sexually dimorphic in body size. However, the expression of sexual dimorphism in orangutans is more complex than simply males being larger than females. At sexual maturity, some male orangutans develop cheek pads (flanges), while other males remain unflanged even after becoming reproductively capable. Sometimes flange development is delayed in otherwise sexually mature males for a few years. In other cases, flange development is delayed for many years or decades, with some males even spending their entire lifespan as unflanged adults. Thus, unflanged males of various chronological ages can be mistakenly identified as “subadults.” Unflanged adult males are typically described as “female-sized,” but this may simply reflect the fact that unflanged male body size has only ever been measured in peri-pubescent individuals. In this study, we measured the skeletons of 111 wild adult orangutans (Pongo spp.), including 20 unflanged males, 45 flanged males, and 46 females, resulting in the largest skeletal sample of unflanged males yet studied. We assessed long bone lengths (as a proxy for stature) for all 111 individuals and recorded weights-at-death, femoral head diameters, bi-iliac breadths, and long bone cross-sectional areas (CSA) (as proxies for mass) for 27 of these individuals, including seven flanged males, three adult confirmed-unflanged males, and three young adult likely-unflanged males. ANOVA and Kruskal–Wallis tests with Tukey and Dunn post-hoc pairwise comparisons, respectively, showed that body sizes for young adult unflanged males are similar to those of the adult females in the sample (all P ≥ 0.09 except bi-iliac breadth), whereas body sizes for adult unflanged males ranged between those of adult flanged males and adult females for several measurements (all P < 0.001). Thus, sexually mature male orangutans exhibit body sizes that range from the female end of the spectrum to the flanged male end of the spectrum. These results exemplify that the term “sexual dimorphism” fails to capture the full range of variation in adult orangutan body size. By including adult unflanged males in analyses of body size and other aspects of morphology, not as aberrations but as an expected part of orangutan variation, we may begin to shift the way that we think about features typically considered dichotomous according to biological sex.

     
    more » « less
  2. PREMISE

    Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm cladeViburnumto examine the evolutionary associations, functional implications, and possible drivers of genome size.

    METHODS

    Chromosome counts and genome size estimates were mapped onto aViburnumphylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function.

    RESULTS

    We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales.

    CONCLUSIONS

    Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply toViburnum.

     
    more » « less
  3. Abstract Objectives

    Socioeconomic status (SES) is a powerful determinant of health, but the underlying biological mechanisms are poorly understood. This study investigates whether levels of DNA methylation at CpG sites across the genome are associated with SES in a cohort of young adults in the Philippines.

    Methods

    DNA methylation was assayed with the Illumina HumanMethylation450 Bead Chip, in leukocytes from 489 participants in the Cebu Longitudinal Health and Nutrition Survey (mean age = 20.9 years). SES was measured in infancy/childhood and adulthood, and was based on composite measures of income, assets, and education. Genome‐wide analysis of variable probes identified CpG sites significantly associated with SES after adjustment for multiple comparisons. Functional enrichment analysis was used to identify biological pathways associated with these sites.

    Results

    A total of 2,546 CpG sites, across 1,537 annotated genes, were differentially methylated in association with SES. In comparison with high SES, low SES was associated with increased methylation at 1,777 sites, and decreased methylation at 769 sites. Functional enrichment analysis identified over‐representation of biological pathways related to immune function, skeletal development, and development of the nervous system.

    Conclusions

    Socioeconomic status predicts DNA methylation at a large number of CpG sites across the genome. The scope of these associations is commensurate with the wide range of biological systems and health outcomes that are shaped by SES, and these findings suggest that DNA methylation may play an important role.

     
    more » « less